MATHEMATICAL ENGINEERING TECHNICAL REPORTS Computing Knapsack Solutions with Cardinality Robustness

نویسندگان

  • Naonori KAKIMURA
  • Kazuhisa MAKINO
  • Kento SEIMI
  • Naonori Kakimura
  • Kazuhisa Makino
  • Kento Seimi
چکیده

In this paper, we study the robustness over the cardinality variation for the knapsack problem. For the knapsack problem and a positive number α ≤ 1, we say that a feasible solution is α-robust if, for any positive integer k, it includes an α-approximation of the maximum k-knapsack solution, where a k-knapsack solution is a feasible solution that consists of at most k items. In this paper, we show that, for any ε > 0, the problem of deciding whether the knapsack problem admits a (ν + ε)-robust solution is weakly NP-hard, where ν denotes the rank quotient of the corresponding knapsack system. Since the knapsack problem always admits a ν-robust knapsack solution [7], this result provides a sharp border for the complexity of the robust knapsack problem. On the positive side, we show that a max-robust knapsack solution can be computed in pseudo-polynomial time, and present a fully polynomial time approximation scheme (FPTAS) for computing a max-robust knapsack solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Knapsack Based Constrained Portfolio Optimization

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...

متن کامل

A Partitioning Scheme for Solving the 0-1 Knapsack Problem

The application of valid inequalities to provide relaxations which can produce tight bounds, is now common practice in Combinatorial Optimisation. This paper attempts to complement current theoretical investigations in this regard. We experimentally search for "valid" equalities which have the potential of strengthening the problem's formulation. Recently, Martello and Toth [13] included cardin...

متن کامل

Randomized Strategies for Cardinality Robustness in the Knapsack Problem

We consider the following zero-sum game related to the knapsack problem. Given an instance of the knapsack problem, Alice chooses a knapsack solution and Bob chooses a cardinality k with knowing Alice’s solution. Then, Alice obtains a payoff equal to the ratio of the profit of the best k items in her solution to that of the best solution of size at most k. For α > 0, a knapsack solution is call...

متن کامل

Sequence independent lifting for 0−1 knapsack problems with disjoint cardinality constraints

In this paper, we study the set of 0−1 integer solutions to a single knapsack constraint and a set of non-overlapping cardinality constraints (MCKP). This set is a generalization of the traditional 0− 1 knapsack polytope and the 0− 1 knapsack polytope with generalized upper bounds. We derive strong valid inequalities for the convex hull of its feasible solutions by lifting the generalized cover...

متن کامل

An iterated "hyperplane exploration" approach for the quadratic knapsack problem

The quadratic knapsack problem (QKP) is a well-known combinatorial optimization problem with numerous applications. Given its NP-hard nature, finding optimal solutions or even high quality suboptimal solutions to QKP in the general case is a highly challenging task. In this paper, we propose an iterated “hyperplane exploration” approach (IHEA) to solve QKP approximately. Instead of considering ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011